

CHEMISTRY

Paper 2 Multiple Choice (Extended)

0620/21

May/June 2019

45 minutes

Additional Materials: Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

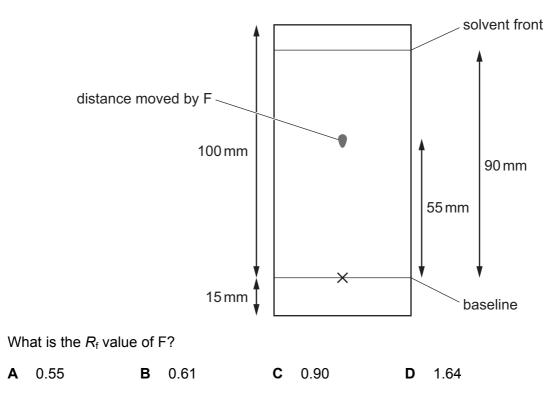
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 16 printed pages.

[Turn over



- **1** Which statement explains why ammonia gas, NH_3 , diffuses at a faster rate than hydrogen chloride gas, HCl?
 - A Ammonia expands to occupy all of the space available.
 - **B** Ammonia has a smaller relative molecular mass than hydrogen chloride.
 - **C** Ammonia is an alkali and hydrogen chloride is an acid.
 - **D** Ammonia molecules diffuse in all directions at the same time.
- **2** 2.00 g of powdered calcium carbonate is added to 50.0 cm^3 of hydrochloric acid.

Which apparatus is used to measure the calcium carbonate and the hydrochloric acid?

	calcium carbonate	hydrochloric acid		
Α	balance	burette		
в	balance	thermometer		
С	pipette	burette		
D	pipette	thermometer		

3 The measurements from a chromatography experiment using substance F are shown. The diagram is not drawn to scale.

https://xtremepape.rs/

- 4 Which statement about an atom of fluorine, ¹⁹₉F, is correct?
 - **A** It contains more protons than neutrons.
 - **B** It contains a total of 28 protons, neutrons and electrons.
 - **C** Its isotopes contain different numbers of protons.
 - **D** Its nucleus contains 9 neutrons.
- **5** Which row describes the formation of single covalent bonds in methane?

Α	atoms share a pair of electrons	both atoms gain a noble gas electronic structure			
В	atoms share a pair of electrons	both atoms have the same number of electrons in their outer shell			
С	electrons are transferred from one atom to another	both atoms gain a noble gas electronic structure			
D	electrons are transferred from one atom to another	both atoms have the same number of electrons in their outer shell			

- 6 Which statement describes the structure of an ionic compound?
 - **A** It is a giant lattice of oppositely charged ions.
 - **B** It is a giant lattice of positive ions in a 'sea' of electrons.
 - **C** It is a giant molecule of oppositely charged ions.
 - **D** It is a simple molecule of oppositely charged ions.
- 7 Propane burns in oxygen.

 $C_3H_8 + xO_2 \rightarrow 3CO_2 + yH_2O$

Which values of *x* and *y* balance the equation?

	X	У
Α	5	4
в	7	4
С	10	8
D	13	8

8 A tablet contains 0.080 g of ascorbic acid ($M_r = 176$).

What is the concentration of ascorbic acid when one tablet is dissolved in 200 cm³ of water?

- $\textbf{A} \quad 9.1\times10^{-5}\,mol\,/\,dm^3$
- $\textbf{B} \quad 4.5\times10^{-4}\,mol\,/\,dm^3$
- $\textbf{C} \quad 9.1\times10^{-2}\,mol\,/\,dm^3$
- $\textbf{D} \quad 2.3\times 10^{-3}\,mol\,/\,dm^3$
- **9** Which statement about the electrolysis of copper(II) sulfate solution using carbon electrodes is correct?
 - **A** A colourless gas is produced at the anode.
 - **B** A colourless gas is produced at the cathode.
 - **C** The colour of the electrolyte remains the same.
 - **D** The mass of both electrodes remains constant.
- **10** Aluminium metal is extracted from aluminium oxide by electrolysis.

Which ionic half-equation describes a reaction that occurs at the named electrode?

	ionic half-equation	electrode			
Α	$20^{2-} \rightarrow 0_2 + 2e^-$	anode			
в	Al^{3+} + $3e^- \rightarrow Al$	anode			
С	$20^{2-} \rightarrow 0_2 + 4e^-$	cathode			
D	Al^{3+} + $3e^- \rightarrow Al$	cathode			

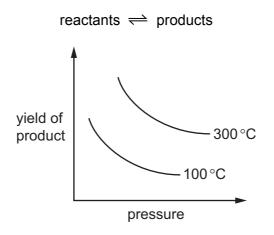
- 11 Which statement about the hydrogen fuel cell is not correct?
 - A Chemical energy is converted into electrical energy.
 - B Hydrogen is oxidised.
 - **C** The reaction that takes place is endothermic.
 - **D** Water is the only product.

12 Nitrogen reacts with hydrogen to produce ammonia.

$$N_2~+~3H_2~\rightarrow~2NH_3$$

The reaction is exothermic. The bond energies are shown in the table.

bond	bond energy in kJ/mol
N≡N	945
H–H	436
N–H	390


What is the energy change for this reaction?

- **A** –1473 kJ/mol
- **B** –87 kJ/mol
- **C** 87 kJ/mol
- **D** 1473 kJ/mol
- **13** Which change in reaction conditions increases both the collision rate and the proportion of molecules with sufficient energy to react?
 - **A** addition of a catalyst
 - **B** increasing the concentration of a reactant
 - **C** increasing the surface area of a reactant
 - **D** increasing the temperature of the reaction
- **14** When blue-green crystals of nickel(II) sulfate are heated, water is produced and a yellow solid remains. When water is added to the yellow solid, the blue-green colour returns.

Which process describes these changes?

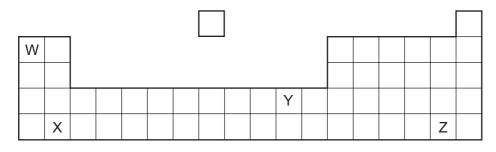
- A combustion
- **B** corrosion
- **C** neutralisation
- **D** reversible reaction

All reactants and products are gases.

Which row is correct for this reversible reaction?

	side of reaction with fewer moles	forward reaction
Α	reactant	exothermic
в	reactant	endothermic
С	product	endothermic
D	product	exothermic

16 Which changes represent oxidation?


- $1 \quad 2I^- \rightarrow \ I_2 \ + \ 2e^-$
- 2 $Cr(VI) \rightarrow Cr(III)$
- 3 Fe(II) \rightarrow Fe(III)
- **A** 1 and 2 **B** 1 and 3 **C** 1 only **D** 2 only
- 17 Nitrogen(I) oxide, N_2O , nitrogen(II) oxide, NO, and carbon monoxide, CO, are all non-metal oxides.

They do not react with acids or bases.

Which statement is correct?

- A They are acidic oxides.
- **B** They are amphoteric oxides.
- C They are basic oxides.
- **D** They are neutral oxides.

18 The positions of elements W, X, Y and Z in the Periodic Table are shown.

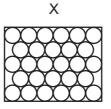
Which elements form basic oxides?

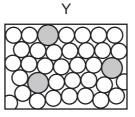
A W, X and Y **B** W and X only **C** Y only **D** Z only

19 Ethanoic acid is a weak acid.

Hydrochloric acid is a strong acid.

Which statements are correct?


- 1 Ethanoic acid molecules are partially dissociated into ions.
- 2 1.0 mol/dm^3 ethanoic acid has a higher pH than 1.0 mol/dm^3 hydrochloric acid.
- 3 Ethanoic acid is always more dilute than hydrochloric acid.
- 4 Ethanoic acid is a proton acceptor.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4
- 20 The properties of an element are shown.


electrical conductivity	density	reaction with water
high	low	reacts violently with cold water

Which element has these properties?

	Α										в				
							С								
D															

- 21 Which statement about elements in Group I and Group VII of the Periodic Table is correct?
 - A Bromine reacts with potassium chloride to produce chlorine.
 - **B** lodine is a monatomic non-metal.
 - **C** Lithium has a higher melting point than potassium.
 - **D** Sodium is more reactive with water than potassium.
- 22 Which statement about elements in Group VIII of the Periodic Table is correct?
 - A They all have a full outer shell of electrons.
 - **B** They all react with Group I elements to form ionic compounds.
 - C They are all diatomic molecules.
 - **D** They are all liquids at room temperature.
- 23 The diagrams show the structure of two substances used to make electrical conductors.

Which statement correctly describes X and Y?

- **A** X is a pure metal and Y is a compound.
- **B** X is a pure metal and Y is an alloy.
- **C** X is a solid and Y is a liquid.
- **D** X is harder and stronger than Y.

24 Three metal compounds, P, Q and R, are heated using a Bunsen burner.

The results are shown.

- P colourless gas produced, which relights a glowing splint
- Q colourless gas produced, which turns limewater milky
- R no reaction

Which row shows the identity of P, Q and R?

	Р	Q	R
Α	magnesium carbonate	potassium carbonate	potassium nitrate
в	magnesium carbonate	potassium nitrate	potassium carbonate
С	potassium nitrate	magnesium carbonate	potassium carbonate
D	potassium nitrate	potassium carbonate	magnesium carbonate

- **25** Zinc is extracted from its ore, zinc blende, using two chemical reactions.
 - $1 \quad 2ZnS \ + \ 3O_2 \ \rightarrow \ 2ZnO \ + \ 2SO_2$
 - 2 $2ZnO + C \rightarrow 2Zn + CO_2$

Which substance is reduced in reactions 1 and 2?

	reaction 1	reaction 2
Α	O ₂	С
в	O ₂	ZnO
С	ZnS	С
D	ZnS	ZnO

26 Four metals, zinc, M, copper and magnesium, are reacted with aqueous solutions of their nitrates.

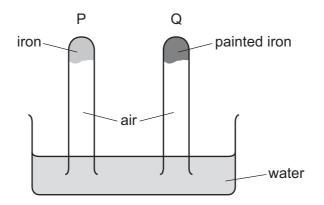
metal	magnesium nitrate	M nitrate	copper nitrate	zinc nitrate	
magnesium		\checkmark	✓	\checkmark	key
zinc	x	\checkmark	✓		✓ = reacts
М	x		✓	X	\boldsymbol{x} = no reaction
copper	x	X		X	

What is the order of reactivity of these four metals starting with the most reactive?

- **A** copper \rightarrow zinc \rightarrow M \rightarrow magnesium
- **B** copper \rightarrow M \rightarrow zinc \rightarrow magnesium
- **C** magnesium \rightarrow M \rightarrow zinc \rightarrow copper
- **D** magnesium \rightarrow zinc \rightarrow M \rightarrow copper
- 27 Why is aluminium used to make containers for storing food?
 - A It conducts electricity.
 - **B** It has a high melting point.
 - **C** It is resistant to corrosion.
 - D It is strong.
- **28** Water can be treated by filtration then chlorination.

Which uses do not need water of this quality?

- 1 water for cooling in industry
- 2 water for washing clothes
- 3 water for drinking
- A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only


https://xtremepape.rs/

29 Oxides of nitrogen are formed in car engines and are a source of air pollution.

To decrease this pollution, catalytic converters are fitted to car exhausts.

What happens to the oxides of nitrogen in the catalytic converter?

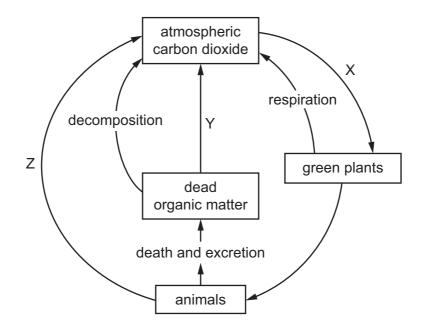
- A combustion
- B cracking
- C oxidation
- D reduction
- **30** The diagram shows an experiment to investigate how paint affects the rusting of iron.

What happens to the water level in tubes P and Q?

	tube P	tube Q
Α	falls	rises
в	no change	rises
С	rises	falls
D	rises	no change

31 Ammonia is manufactured by the Haber Process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

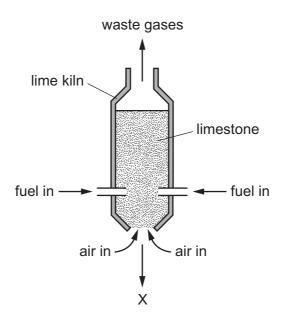

The forward reaction is exothermic.

Which conditions	maximise the	yield of	f ammonia?
------------------	--------------	----------	------------

	pressure	temperature
Α	high	high
В	high	low
С	low	high
D	low	low

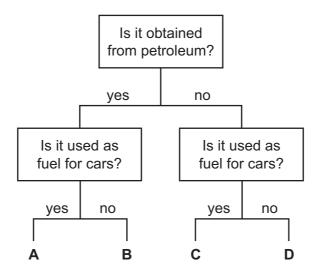
12

32 The carbon cycle is shown.


Which row describes processes X, Y and Z?

	Х	Y	Z
Α	respiration	combustion	photosynthesis
в	respiration	photosynthesis	combustion
С	photosynthesis	combustion	respiration
D	photosynthesis	respiration	combustion

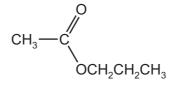
33 Which row shows the conditions used in the Contact process?


	temperature /°C	pressure / atm	catalyst
Α	25	2	iron
в	25	200	iron
С	450	2	vanadium(V) oxide
D	450	200	vanadium(V) oxide

34 The diagram represents a lime kiln used to heat limestone to a very high temperature.

What leaves the kiln at X?

- A calcium carbonate
- B calcium hydroxide
- C calcium oxide
- D calcium sulfate
- 35 Which fuel could be gasoline?


- 36 Why is ethanol a member of the homologous series of alcohols but propane is not?
 - A Ethanol has two carbon atoms per molecule but propane has three.
 - **B** Ethanol can be made from ethene but propane is obtained from petroleum.
 - **C** Ethanol is a liquid but propane is a gas.
 - **D** Ethanol contains the same functional group as other alcohols but propane does not.
- 37 Chlorine reacts with methane.

Which statements are correct?

- 1 The reaction takes place in the dark.
- 2 The reaction of chlorine with methane forms chloromethane.
- 3 Chloromethane reacts with chlorine to produce dichloromethane.
- 4 The reaction of chlorine with methane is an addition reaction.

A 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 3 and 4

- 38 Which statements about aqueous ethanoic acid are correct?
 - 1 Ethanoic acid contains the functional group –COOH.
 - 2 Ethanoic acid reacts with carbonates to produce hydrogen.
 - 3 Ethanoic acid turns Universal Indicator paper blue.
 - 4 Ethanoic acid has a pH lower than pH 7.
 - A 1 and 2 B 1 and 3 C 1 and 4 D 2 and 4
- **39** The structure of an ester is shown.

What is the name of the ester?

- A ethyl propanoate
- **B** methyl propanoate
- **C** propyl ethanoate
- **D** propyl methanoate

40 The structure of a polymer is shown.

Which type of polymer is shown and by which process is it formed?

	type of polymer	formed by
Α	carbohydrate	addition polymerisation
в	carbohydrate	condensation polymerisation
С	polyester	addition polymerisation
D	polyester	condensation polymerisation

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019

The Periodic Table of Elements

	/	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Ъ	krypton 84	54	Xe	xenon 131	86	Rn	radon -				
	NII V				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine 				
	N				8	0	oxygen 16	16	ა	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъо	polonium –	116	Ľ	livermorium -	
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth 209				
	2				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	РЬ	lead 207	114	Fl	flerovium -	
	≡				5	ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				
											30	Zn	zinc 65	48	Cq	cadmium 112	80	Hg	mercury 201	112	C	copernicium -	
											29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -	
Group											28	ïZ	nickel 59	46	Pd	palladium 106	78	Ъ	platinum 195	110	Ds	darmstadtium _	
Gro											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium 	
		-	т	hydrogen 1							26	Fе	iron 56	44	Ru	ruthenium 101	76	SO	osmium 190	108	Hs	hassium 	
											25	Mn	manganese 55	43	Tc	technetium -	75	Re	rhenium 186	107	Bh	bohrium —	
							bol	sse				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	ц	tantalum 181	105	Db	dubnium –	
						ato	rele				22	F	titanium 48	40	Zr	zirconium 91	72	Ħ	hafnium 178	104	ŗ	rutherfordium —	
											21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	56	Ba	barium 137	88	Ra	radium –	
	-				ю	:	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ъг	francium	
											-												

16

+	п	lutetium 175	33	_	ncium		
- 2		lutet 17	10		lawrer	'	
70	γb	ytterbium 173	102	No	nobelium	I	
69	Tm	thulium 169	101	Md	mendelevium	I	
68	ц	erbium 167	100	Еm	fermium	I	
67	Ю	holmium 165	66	Es	einsteinium	I	
66	Dy	dysprosium 163	98	ç	califomium	I	
65	Tb	terbium 159	97	ВĶ	berkelium	I	
64	Gd	gadolinium 157	96	Cm	curium	I	
63	Eu	europium 152	95	Am	americium	I	
62	Sm	samarium 150	94	Pu	plutonium	I	
61	Pm	promethium –	93	ЧN	neptunium	I	
60	Nd	neodymium 144	92		uranium	238	
59	Pr	praseodymium 141	91	Ра	protactinium	231	
58	Ce	cerium 140	06	Th	thorium	232	
57	La	lanthanum 139	89	Ac	actinium	I	
	lanthanoids			actinoids			

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

© UCLES 2019

0620/21/M/J/19